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l. INTRODUCTION

Plans for using the space shuttle orbiter vehicle to launch a
number of payloads have been under recent investigation. It is proposed

that the shuttle be launched from the Eastern Test Range inserting the

g ; -
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orbiter into a park orbit.
An interim upper stage (IUS) which is to be deployed from the

orbiter and used to achieve the desired final orbit has been of interest

E to the Air Force as well as a number of private contractors.

E The park orbit was defined by a number of considerations to be

: a circular orbit with altitude of 160 n mi and inclination 37.4°. It was
desired that the final orbit have an inclination of 63.4°, an argument

of perigee of 270°, and a period of twelve hours. The specific twelve
hour orbit of interest has an apogee altitude of 21450 n mi and a perigee
altitude of 350 n mi. It became apparent that most of the proposed IUS

configurations could not perform the orbit transfer from park orbit to

final orbit using two burns, and gtill yield some desired payload values.
Consequently a study was initiated to investigate the feasibility of an
optimal three burn orbit transfer.

This report presents the results of the optimal three burn orbit
transfer investigation. Initially the definition of a simplified orbit

transfer simulation, using Keplerian orbit transfers and impulsive

velocity increments, is given. After discussing the use of a nonlinear
programming algorithm to solve this simplified problem, the results

for a family of final orbits with differ :nt inclinations are presented.

The accuracy of the simplified simulation has been verified by comparison

with a detailed trajectory simulation.




THE ORBIT TRANSFER PROBLEM

a) Three Burn Impulsive Velocity Orbit Transfer

Let us begin with the definition of a simplified orbit
transfer simulation.

1) Specify the initial state: the position vector y(t,), the
velocity vector y{t_), and the initial time t,. We assume that the
state is specified using an earth-centered inertial (ECI) coordinate
system, and is a point on the 160 n mi. circular park orbit with
inclination 327.4°. Furthermore we shall assume that a spherical
earth model describes the geopotential function.

2) Coast in the orbit until time = t| = tg + At), where A4t) is
the length of the first coast in seconds. Essentially the coa-t is
simulated by integrating the equations of motion, y = -plyu'By,
from t, to t). The result of the integration is the state vector
y(t]), y(t)) and because of the spherical geometry assumption this
integration can be performed quite rapidly. The complete algorithm
for two-body motion in space used in the simulation is described
in Escobal 1 .

3} Simulate the first burn, by adding to the inertial velocity
vector y(t;) the velocity increment defined by (4V,, 46, 4y]).
The pitch increment 48] and the yaw increment 4¢) are defined
with respect to the lpcal inertial velocity as shown in Figure 1, and

are applied as a yaw-pitch-roll sequence,
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Figure i. Definition of Yaw Increment, &%, and Pitch
Increment, A8
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4) Coast in the first transfer orbit as defined by the new
state vector until time =tz = t) + At,.

5) Simulate the second burn, i.e., add to the inertial velocity
vector the increment defined by (4V,, 86;,, bv,;).

6) Coast in the second transfer orbit urtil time = ty =ty + Atz

7) Simulate the third burn - add the increment defined by
(AVB' 463, 8¥,).

8) End of Simulation - Final Orbit.

It is important to note that the coast times At; and the velocity
increments (AVi. A 6.1, A¥y) i=1,2,3, in conjunction with the initial
conditions completely determine the final orbit. The entire sequence of

events was simulated using the Generalized Trajectory Simulation (GTS) 2 .

b) The Optimization Problem

The sequence of steps required to compute the final orbit

have been outlined. Explicitly one must choose the twelve variables

-

X = (Atl, Atz, At3, AVl, AVZ, AV3, Aeln 64’1, AGZ, szl A%|A$3)
such that the objective function

f(x) = 8V, + 8V, + AV, (1)

i8 minimized and the constraints

¢ (x) = hy - 21,450 = 0. (2)
cy(x) = by, - 350 = 0. (3)
c4x) = w, - 270 = 0. (4)
cyx) =i -53.4 =0, (5)
cg(x) = 75,000 - hy(t)) 20 (6)
cé(;) = 75,000- hy(t,) 20 (7)

are satisfied, where ha is the apogee altitude (n rmr.i), h_ the
perigee altitude (n mi), wp the argument of perigee (deg), and i the
inclination (deg).




The first two constraints on apogee and perigee altitude ha and hp
are representative of the family of twelve hour period orbits required.
The third constraint requires that the argument of perigee, wp be 270°
and the fourth constraint defines the final orbit inclination. The last
two constraints establish limits on the apogee altitudes of the first and
second transfer orbita respectively, and are included to prevent escape
orbits during the transfer. The 75000 n mi limit is somewhat arbitrary

and its significance will be discussed later.

3. THE NONLINEAR PROGRAMMING PROBLEM

The previous section ocutlined an example of a nonlinear programming
problem. Stated concisely the general problem is to determine the n-vector

X T (X4 Xpe oo .x,} that minimizes {maximizes) the cbjective function

f(x) = f(xln Xz; “ee xn) (8)

subject to the equality constraints
ci(x) =0 i=1l...k (9
and the inequality constraints

cyix) =0 i=(k+l),...,m. (10)

Define the Lagrangian
Lix, A) = £(x) + cT(x) A (11)

where Aig the m-vector of Lagrange multipliers. The Kuhn-Tucker

. . . » *
necessary conditions require that at the optimum point (x , A’}

TL(x", M%) = gx) + Gix)AF =0 (12)
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where g(x) is the gradient vector of f(x), and the n x m Jacobian matrix

is defined by

B "1
ol & be
1 m
Ox X
1
G(x) = [Ve,, .vcm] =1 . . (13)
dc . 8¢ m
Ox Fx
i n n |
Alsgo at (x*, A*)
* *
Aici(x) =0 i=1, ..., m (14)
* ,
where A; < 0 i=(kt1l),... m (15)

In order to distinguish the set of constraints satisfied as equality

constraints at the golution introduce the basic set of conatraints

B - {ilci(x#)=0; i:l,...,m} (16)
Asgsume that the gradients of the consiraints in B* are linearly
independent at x*.

The solution of the nonlinear programming problem has
received a great deal of attention in recent years and a number of
algorithms have appeared in the literature. The accelerated multiplier
algorithm was used to solve the stated orbit tranefer problem. Essen-
tially the algorithm consists of a number of cycles through the following

steps:

= e L e -




Step |. Find a point where 9 L(x, A) = 0, for fixed A, by
finding the unconstrained minimum of an augmented performance
index, A rank one recursive algorithm is used for the

unconstrained optimization nrocess,

Step 2. Estimate the Lagrange multipliers A, by minimizing
the error in the Kuhn-Tucker conditions. Using the multipliers,

»”
make an estimate B for the basic set of constraints B ,

Step }. Extrapolate to find a point where c.l(x) = 0, assuming

th- objective function is Quadratic and the constraints are linear.
Step 4. Reestimate the multipliers A, and the basis B.
Step 5. Test for Convergence.

Typically two or three cycles are required to obtain the desired accuracy.
For a more detailed description of the nonlinear programming algorithm,
the reader is referred to Ref. 3-5,

4. ORBIT TRANSFER RESULTS

The nonlinear programming algorithm given above was applied
to the stated orbit transfer prublem and Figure 2 summarizes the results,
After coasting in the park orbit the firat burn added 7820 fps to the
tnertial velocity vector with very little pitch offset (-1.36°) and yaw
affset (5.99°). The resulting transfer orbit had an apogee altitude of
17,617 n mi, while keeping the perigee altitude and inclination essentially
unchanged. After coasting to an altitude, h, of 10,838 n mi, where the
srgument of ilatitude, u, was 37.7°, the second burn was performed. An
impu.sive velocity of 4054 fps was added with & yaw left of 74.7° and
a positive pitch angle of 7. 21°, Becaunse of this out of plane maneuver,
most of the required plane change was accomplished, the second transfer
orbit having an inclination of 58.3°. Notice also that the second transfer
orbit has an apogee altitude of 23,386 n mi and a perigee altitude of
1,314 n mi and hence has more energy than the desired final orbit.
The third and final burn occurred when the argument of latitude was
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SECOND TRANSFER ORBIT
h, = 23,386 i
hp= 1314 nmi
| = 58
wg= 27"

B SECOND BURN
BV, =4054fps
£g, =120

THIRD BURN M= T8
; ' ' 2332]&511;:98 h =1'0,838 nmi
. 3 ' u=37.7°
Oyy=1017
h = 12,632 nmi FIRST TRANSFER
u=1217° ORBIT
ha = 175617 nmi
FINAL ORBIT hp = 1580 nmi
h, = 21,450 nmi i37-8°°
hy =360 m wy =254
| =64 FIRST BURN
w, =210 AV, = 7820 fps
06, =136"
By =589°
u = 2560

Figure 2, Optimal Three Burn Transfer, | = 63,4"*
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121.7° at an altitude of 12,832 n mi, and was essentially a retro burn
which added 1,514 fps velocity with a yaw attitude of 121, 2% and pitch
down of 21. 8% The retro maneuver corrected the argument of perigee
error in the second transfer orbit while also reducing the energy of the
final orbit,
After obtaining results for the final orbit with inclination of 63. 4°,
a number of other optimal solutions were obtained for larger inclinations.
In particular,Figure 3 presents the optimal three burn orbit with an
inclination of 116.6°, which required a plane change of 79.2° from
the park orbit. All other constraints in the original problem statement
rermain unchanged. The first burn added 9686 fps velocity approximately
along the inertial velocity vector (48, = -.113°, Ay, = 1.080), As in
the first case,the resulting transfer orbit remained nearly unchanged in
all orbital elements except the apogee altitude which was increased to
72,364 n mi. After coasting to an altitude of 65,041 n mi, an additional
3,572 fps was added to the velocity in the direction defined by A6, = 42.7°
and 89, = -125°. The resulting transfer orbit had an inclination of 118.4°,
more than the required 116.6° and, furthermore, the apogee altitude was
75,000 n mi. Note that for this case the transfer orbit apogee inequality
constraint (7) is satisfied as an equality constraint, that igc(x) is in
the basic set of constraints B*. The third burn was again a retro
maneuver, adding 3522 fps, in a direction yawed 187° from the inertial
velocity, and pitched down 21, 4°.
Figure 4 presents a comparison of the minimum total velocity
increments for two and three burn transfers to a range of final orbit
inclinations. Notice that there is a reduction of approximately 5.12% |
in the total AV required to perform the mission when the three burn 1
approach is used for a Z26° plane change (i = 63.4°), The percentage f
improvement increases dramatically when the plane change is 79. 2° |
(1 = 116.6°% to 37, 5%. It should be noted that the 5. 12% reduction
in total AV results in nearly 20% more payload capability for typical
IUS configurations.

It is interesting to obeerve that for a plane change greater than
41°, the transfer orbit apogee altitude constraint was in the optimal
basis, whereas for a plane change less than 41° the constraint was not violated,




SECOND BURN
av, =35721ps

D8y =42.1°

Dyy =-128° SECOND TRANSFER ORBIT
h = §5,041 nmi hy= 76,000 nmi
u=751 = 2692nmi

1 =118.4°
wp =2347°
FIRSTOES'ATNSFER THIRD BURN
b= 72364 m AVq= 3,522 fps
ha— 158 nmi Aby= 2140
’ ?‘- '%7 50 : Aqu 1870
1= 3/. : - .
‘ h = 8431 nmi
= 0 !
wo= 2633 =Y
FINAL ORBIT
h,= 21,450 nmi FIRST BURN
o ny= 350 nmi AVy= 9,686 fps
1 =116.6° A84= 03
wy= 276° INTE 1.08°
- ' u = 263°
{= 116, 6°

Figure 3. Optimal Three Burn Transfer,
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The numerical sensitivity ot the sclution in this region is apparent
irom the rapidly changing behavior of the variables in this region. It
seems clear that if the constraints did not prevent escape, the optimal

solution would be to perform the second burn at an infinite altitude. In th

18

situation one could accomplish all of the plane change with AVZ = 0. This

of course 13 not a realistic solution to the problem. In general, for a
three burn transfer requiring a plane change, one can expect that for a
large enough plane change the optimal solution requires the second
burn at infinity. The threshold value for the specific orbit transfer

considered was approximately 41° plane change.

5. EXTENSIONS AND GENERALIZATIONS

a) Multiple Stage Vehicles
The results presented so far do not involve the vehicle
mass in any of the computations. When dealing with a restartable single
stage vehicle,this approach can be valuable. However, when a multiple
stage vehicle is considered, the mass changes that occur at staging
cannot be overlooked. In particular one can consider computing the
AVj for an N-stage vehicle according to the equations.
[N ﬂ
J +Z (P +s)
k=)
N
J +
+ -
T k57,

k=

,yJ=1, 2,...N, (17)

AV, =g L1
i~ 8oy

where J is the weight of the _1iyload, Pk the weight of the propellant in
the k th stage, Sk the weight of the structure of the k th stage, Ik the
effective specific impulse of the k th stage and g, the gravitational
constant. '

. By us‘ng the equations (17) tu define the velocity increments in
the trajectory simulation dascribed in Section 2a) one can consider a
number of different optirnization problems. Specifically, one can pose a
maximum payload orbit transfer Ly defining the objective function in Eq.
(1) to be the payload J. Since the velocity increments are defined by
Eq. (17), they are not trasated as optimiration variabies. Instead the

e
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variable set must contain the payload J. When designing a vehicle
one may also want the propellant and/or structure weights Pk and Sk
to be treated as variables. Cases have been run using each of the
different sets of variables, for preliminary design analysis of the IUS
vehicle. It should be clear that the maximum payload capability

to a given orbit does not neccssarily result by flying a minimum 4V
orbit transfer, unless the vehicle's weights Pk and Sy have been
specifically designed for that orbit.

b) Finite Burn and Oblate Earth Effects

In the simulation an impulsive velocity approximation
to a finite burn was used, and oblate earth effects were neglected in
the geopotential model. To assess the effect of these approximations,
the results were compared with those obtained from a detailed
simulation. The variables for the detailed simulation included pitch
and yaw attitudes at the beginning of each burn, coistant pitch and yaw
zates during the burns, the burn times, and locatior of each burn. The
payload difference for typical missions was quite small (normally within

a few percent),

c) Mirror Image Solutions
It should be observed that the optimization algorithm

used to obtain the results presented only obtains a local optimum point.
Another local solution to the problem doet exist which we refer to as a
mirror image solution. Because of the problem symmetry, the optimal
value of the objective function is the same, although the location of the
burns are different. For example, in the mirror image solution to the
results presented in Fig. 2, the argument of at'tude at the start of
the second burn is in the second quadrant rather than in the first.
Similarly, the argument of latitude for the beginning of the third burn
is in the first quadrant rather than the second. Although the objective
function is the same between the mirror image and the regular solution,
there may be some other criteria for preferring one to the other. For
example, the total transfer time or gro_und tra'ck for one case may be more
desirable than tho qthg;. »
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6. SUMMARY AND CONCLUSIONS

The report outlines a nonlinear programming approach for
obtaining the optimal three burn solutions to a class of orbit transfer
problems requiring large changes in orbital inclination. For this type
of problem,the first burn raises the apogee altitude of the first transfer
orbit, and the second burn is performed at a high altitude. Since the
velocity is low, most of the plane change can be efficiently accomplished
by this burn. The final burn thus decreases the energy to meet the
final orbit constraints. There can be a significant AV benefit derived from
a three burn transfer with respect to a two burn transfer as Figure 4
indicates, Generalization of the approach to multiple stage vehicles as
as well as more detailed trajectory simulations is discusesed. The method
is currently being used to solve a wide variety of trajectory optimization
problems of varying complexity.
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